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Uric acid and cardiometabolic diseases
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Abstract

Hyperuricemia, which has been considered as a cause of gout and nephrolithiasis has recently been suggested to
be associated with hypertension, coronary heart disease, heart failure, atrial fibrillation, insulin resistance, and
nonalcoholic fatty liver disease. Several clinical and experimental studies have supported uric acid (UA) as an
independent risk factor for predicting disease development along with the traditional risk factors. The mechanism
by which UA causes cardiometabolic disease has not been fully elucidated to date; however, it has been explained
by several hypotheses such as oxidative stress, reduced nitric oxide bioavailability, inflammation, endothelial
dysfunction, and so on. Although evidence of the preventive and therapeutic effects of UA lowering therapy on
cardiometabolic diseases is still insufficient, it is expected to be considered as a new treatment strategy for such
diseases through additional, carefully designed, large-scale clinical studies.
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Introduction
Uric acid (UA) is the end product of purine metabolism
in humans, it is formed from xanthine by xanthine
oxidase enzyme through several steps and excreted into
the urine. UA is endogenously synthesized mainly in the
liver, intestines, muscle, and vascular endothelium [1, 2].
Exogenously, UA can be increased by intake of red meat,
seafood, fatty food, alcohol, sugar-sweetened (fructose)
drinks, and so on [3–5]. In addition, UA levels are in-
creased in a state of rapid cell turnover such as tumor
lysis syndrome, leukemia, lymphoma, or myeloprolifera-
tive disease. Hyperuricemia treatment can be divided
into two main categories, namely, reducing UA produc-
tion with xanthine oxidase inhibitors (febuxostat, allo-
purinol, etc.), and increasing UA excretion by using
uricosurics (probenecid, benzbromarone, etc.).
In many mammals, UA is converted to highly soluble

allantoin and maintained at very low levels (approxi-
mately 1 mg/dL; 60 μmol/L) [6]. Meanwhile, because the
urate oxidase or uricase gene is modified to an

unexpressed (pseudogene) state in humans, UA is no
longer catabolized to allantoin and becomes the end
product of purine metabolism. Eventually, UA is main-
tained at the theoretical limit of solubility in the serum
(6.8 mg/dL), and is periodically excreted in the urine,
mostly supersaturated [7].
Pathologically, increased serum UA levels lead to

crystal (monosodium urate [MSU]) precipitation in the
joints, soft tissue, kidneys, and other organs, which in
turn causes various diseases [8, 9]. It has been known for
decades that UA has a significant role in gout and
kidney stones formation [7, 10]. Gout, a crystalline
arthropathy, has become increasingly common in the
last few decades [11]. Its prevalence among US adults is
3.9%, and hyperuricemia prevalence, which is a pre-
requisite for gout development, is 14.6% [12]. Further-
more, gout prevalence is 0.76% in Korea, 1.1% in China,
2.49% in the UK, and 0.9% in France [13–16].
The role of UA in CVD or cardiometabolic disease is

still controversial because it is perceived that UA plays a
protective role in oxidative stress. Otherwise speaking,
UA acts as an active oxygen scavenger in the human
body and has an antioxidant effect that prevents cardio-
vascular diseases (CVD), such as atherosclerosis [17, 18].
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In support of this, a study of healthy volunteers showed
that the antioxidant effect of UA was substantially
greater than that of the ascorbic acid [19, 20].
However, several clinical and epidemiological studies

have presented the relationship between UA and various
disorders including CVD, metabolic syndrome, and kid-
ney disease, thereby overwhelming the beneficial effects
of UA [21–25] (Fig. 1). Furthermore, hyperuricemia can
be associated with cardiometabolic diseases as an inde-
pendent risk factor in asymptomatic subjects without
comorbidities [26]. In this review, we discuss the rela-
tionship between UA and cardiometabolic disease.

Uric acid and hypertension
Several studies have demonstrated that hyperuricemia is
associated with hypertension development [26–28]. A
recent meta-analysis study reported that the risk of inci-
dent hypertension increased by 13% for every 1 mg/dL
increase in the UA level [27]. The linear relationship be-
tween hypertension and UA levels was valid despite the
UA levels being within the normal range, and in the
absence of a threshold [29]. We postulated that asymp-
tomatic hyperuricemia in the healthy population demon-
strated to be an independent risk factor for the
occurrence of incident hypertension [30]. The effect of
UA on incident hypertension was more remarkable in
younger individuals and women [31]. However, the rela-
tionship between UA and hypertension was not related
to racial differences [26, 32].

In experimental studies, it was suggested that UA in-
hibits nitric oxide release from the endothelial cells,
activates the renin-angiotensin system, and increases
oxidative stress, which damages the endothelial cells and
causes vasoconstriction, leading to hypertension devel-
opment [33–37]. In addition, genetic variations in
SLC2A9 and GLUT9, associated with the regulation of
UA levels in the human body, are known to be associ-
ated with hypertension development [38–41].

Uric acid and coronary heart disease
CVD is the leading cause of death worldwide, with
ischemic heart disease accounting for nearly 50% of all
CVD mortalities, according to the World Health
Organization (WHO) estimates [42]. Since the past de-
cades, clinical and experimental studies have suggested
that UA was associated with CVD. Furthermore, it was
argued that UA could be considered as a potential thera-
peutic target, proving that it is an independent risk
factor for CVD [43, 44]. In an observational cohort study
of 5115 recruited young adult participants, hyperurice-
mia was shown as an independent risk factor for sub-
clinical atherosclerosis [44]. In another large cohort
study, the Rotterdam study, 4385 adults aged 55 years
and older showed that the increased UA levels were in-
dependent prognostic factors of cardiovascular events
and all-cause mortality [45]. A meta-analysis study re-
ported that for every 1 mg/dL increase in the serum UA
level, the overall coronary heart disease (CHD) risk

Fig. 1 Schematic diagram showing interplay of uric acid, metabolic syndrome and CVD. CVD, cardiovascular disease; RAS, renin-angiotensin-
aldosterone system; NAFLD, Non-alcoholic fatty liver disease
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increased by 20% and all-cause mortality increased by
9% [46]. In other studies, the UA levels and both all-
cause and cardiovascular mortalities had a U-shape rela-
tionship [47]. Furthermore, the association between UA
and CVD was found to be stronger in women than in
men [48]. Several cohort and meta-analysis studies of in-
dividuals with coronary artery disease have also shown
that UA increases mortality [49–51]. A meta-analysis of
nine studies with 25,229 patients with confirmed or sus-
pected CHD suggested that every 1 mg/dL increase in
the UA level was associated with a 12 and 20% increase
in the cardiovascular and all-cause mortalities, respect-
ively [51]. Several experimental studies have further sug-
gested that UA causes CHD through the mechanism of
reducing nitric oxide in the endothelial cells, inhibiting
endothelial proliferation, and inducing platelet adhesive-
ness as well as activating proliferative and inflammatory
pathways in the vascular smooth muscle [52–54]. In
addition, it has been hypothesized that UA causes endo-
thelial dysfunction by increasing oxidative stress through
xanthine oxidase, thus affecting CHD [55]. Allopurinol,
a xanthine oxidase inhibitor, reduced the risk of myocar-
dial infarction (MI); however, colchicine did not support
this hypothesis [56].
On the contrary, some studies including ours, have

argued that serum UA did not meaningfully improve the
prediction of CHD in the general population and was
not associated with all-cause and cardiovascular mortal-
ities [57, 58]. Furthermore, two recent Mendelian
randomization studies did not demonstrate a clear
causal relationship between UA and CHD [59, 60]. Such
evidence suggests that further research will need to be
carefully conducted, taking into account all possible con-
founding factors, in order to reach a clear conclusion
about the association and causality between UA and
CHD.

Uric acid and heart failure
Hyperuricemia is frequently found in heart failure pa-
tients, and UA levels are elevated in more than half of
the hospitalized chronic heart failure patients [61, 62].
Hyperuricemia has a deleterious effect on the New York
Heart Association (NYHA) class, exercise capacity,
oxygen consumption, diastolic dysfunction, and cachexia
[63–66]. Several longitudinal studies [67–70] and meta-
analyses [71, 72] have assessed the association between
UA and heart failure and found that elevated UA levels
not only act as a risk factor for heart failure incidence,
but are also associated with the severity of the disease
and poor prognosis. Moreover, the Framingham Off-
spring Cohort Study reported that heart failure incidence
rates were about sixfold higher among those at the high-
est quartile of serum UA (> 6.3 mg/dL) compared to
those at the lowest quartile (< 3.4 mg/dL) and the

adjusted hazard ratio was 2.1 (95% CI 1.04–4.22) [73]. A
recent meta-analysis demonstrated that for every 1mg/
dL elevation in serum UA level, the odds of heart failure
development increased by 19% (HR 1.19, 95% CI 1.17–
1.21), and the risk of all-cause mortality increased by 4%
(HR 1.04, 95% CI 1.02–1.06) [72]. Furthermore, in the
British Regional Heart Study, treated hypertensive men
with serum UA levels above 410 μmol/L showed an in-
creased risk of heart failure of more than twofold com-
pared to those on treatment with levels below 350 μmol/
L, even after adjustment for confounding factors [74]. In
addition, this study showed that serum UA may be a
valuable prognostic marker for heart failure risk in older
adults who were treated with hypertension. Although
the mechanisms or pathways in which UA affects heart
failure development have not yet been clearly identified,
it has been postulated to be due to xanthine oxidase up-
regulation, renin-angiotensin-aldosterone system (RASS)
activation, and use of diuretic drugs that may reduce UA
excretion [75–78]. Based on these assumptions, serum
UA lowering therapy with xanthine oxidase inhibitors
such as allopurinol or febuxostat has shown clinical ben-
efits in heart failure patients [79, 80]. However, some
studies have not revealed noteworthy benefits of UA
lowering therapy with xanthine oxidase inhibitors in
heart failure patients with hyperuricemia; hence, further
studies are needed [81, 82].

Uric acid and atrial fibrillation
Recent studies have shown that elevated UA levels are
associated with increased risk of atrial fibrillation. A
European cohort study involving approximately 6000 pa-
tients showed that high baseline UA levels increased the
risk of atrial fibrillation [60]. In a study on diabetic
patients, the elevated UA levels were associated with the
risk of atrial fibrillation [83]. Additionally, recent meta-
analysis studies have shown that increased UA levels
were associated with an increased risk of atrial fibrilla-
tion [84, 85]. This association was known to be greater
in women than in men. The Atherosclerosis Risk in
Communities (ARIC) study reported that elevated UA
levels increased the risk of atrial fibrillation by 1.16
times, especially in women and blacks [86]. Moreover,
our large cohort study has shown that elevated UA levels
had a pronounced and independent association with the
risk of atrial fibrillation, which was greater in women
than in men [87]. Several studies have further suggested
a link between sexual differences and UA levels because
estradiol plays a role in protecting the endothelial cells
and lowering the UA levels [88, 89]. The mechanism
underlying the association between UA and the risk of
atrial fibrillation has not been fully elucidated. However,
it has been explained that UA causes atrial remodeling
by inducing inflammation, oxidative stress, RASS
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activation and endothelial dysfunction, thereby increas-
ing the risk of atrial fibrillation [90–92]. UA causes elec-
trical remodeling, which shortens the atrial refractory
period and establishes a reentry circuit in the atrium
[91]. Furthermore, UA causes structural remodeling and
slows the conduction velocity, thereby allowing reentry
[90]. Elevated UA levels increase the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase and
xanthine oxidase activity, which in turn increase the
reactive oxygen species. Such mechanisms may corres-
pondingly contribute to the pathological consequences
of atrial fibrillation such as thrombosis, inflammation,
and tissue remodeling [93]. Based on these theories, a
number of experimental studies have been published
stating that inhibiting xanthine oxidase and NADPH
oxidase reduces oxidative stress, and that N-
acetylcysteine usage as an antioxidant may be beneficial
in atrial fibrillation treatment or prevention. However,
further research will be needed to determine the useful-
ness of these drugs, as research on humans, largely con-
ducted based on highly defined policies, has raised
controversial questions due to the disparate outcomes.
Most of these studies have been conducted on a limited
basis with highly defined populations.

Uric acid and insulin resistance / metabolic
syndrome
Metabolic syndrome (MetS), once called ‘Syndrome X’
by Raven in the year 1988, is a group of risk factors that
increase CVD [94]. From that moment on, there has
been some confusion in diagnosis due to the existence
of various criteria that define MetS [95–97]. However,
several organizations and expert groups, such as the Na-
tional Cholesterol Education Program Adult Treatment
Panel III (NCEP:ATPIII), American Association of
Clinical Endocrinologists (AACE), International Diabetes
Federation (IDF), and American Heart Association/Na-
tional Heart, Lung, and Blood Institute (AHA/NHLBI),
continue to attempt to incorporate different parameters
for diagnosing MetS [98]. The NCEP:ATPIII defined the
components of MetS related to CVD as abdominal obes-
ity, atherogenic dyslipidemia, elevated blood pressure,
insulin resistance, and pro-inflammatory and pro-
thrombotic states [99]. Insulin resistance refers to a
pathological condition that results in abnormally low in-
sulin sensitivity at the physiological insulin levels, which
eventually leads to hyperinsulinemia [100]. Historically,
hyperuricemia was frequently observed in MetS, but this
was thought to be due to the secondary effect of hyper-
insulinemia due to the decreased renal excretion of UA
by distal tubular reabsorption [101]. However, a recent
epidemiologic study conducted by our group has shown
that hyperuricemia often precedes the development of
insulin resistance, and that serum UA is an independent

risk factor for MetS, including insulin resistance [23].
Additionally, xanthine oxidase inhibitors such as allopur-
inol not only decreased the UA levels, but also improved
insulin resistance and systemic inflammation in asymp-
tomatic individuals with hyperuricemia [102]. The
precise mechanism of UA-induced insulin resistance is
not yet clear; however, two hypotheses have been
suggested. The first hypothesis is that UA inhibits
insulin-induced endothelial nitric oxide synthase (eNOS)
phosphorylation and subsequent nitric oxide (NO) pro-
duction, thereby contributing to insulin resistance;
therefore, using UA lowering agents such as allopurinol
improves insulin resistance [103]. The second hypothesis
is that UA affects adipocytes by upregulating the pro-
inflammatory factors and downregulating the insulin
sensitizers and anti-inflammatory factors [104]. Experi-
ments using mouse models of MetS have shown that
lowering UA by xanthine oxidase inhibitors in obese
mice with MetS can improve the inflammatory endo-
crine imbalance in adipose tissue by increasing the pro-
duction of adiponectin [104]. Based on these studies, it
is necessary to clarify the mechanism by which UA
causes insulin resistance in humans and conduct large-
scale clinical studies to determine the effect of lowering
UA levels on insulin resistance.

Uric acid and non-alcoholic fatty liver disease
Non-alcoholic fatty liver disease (NAFLD) refers to the
condition of fat infiltration in the hepatic parenchyma
without alcohol abuse, which can potentially lead to liver
cirrhosis or liver cancer, and is known to be associated
with coexisting conditions such as obesity, type 2
diabetes mellitus, and hyperlipidemia [105]. Recently, a
growing number of studies, including our study, have
suggested that the elevated serum UA level is associated
with an increased risk of NAFLD [24, 106]. The associ-
ation between serum UA and NAFLD was greater in the
obese population as well as in women than in men
[107]. In addition, experimental studies using animal
models have demonstrated that UA lowering therapy
may help in the development and treatment of NAFLD
[108, 109]. The mechanism involved in NAFLD develop-
ment by UA is not yet clear; however, several hypotheses
have been suggested. The first is that increased UA
levels increase reactive oxygen species (ROS) production
and oxidative stress, leading to pro-inflammatory endo-
crine imbalance [104]. Second, UA induces lipogenesis
by endoplasmic reticulum generation and activation of
fatty acid synthase and acetyl-CoA carboxylase, thereby
leading to fat accumulation in the hepatocytes [110].
Lastly, UA deteriorates the endothelial function and ni-
tric oxide bioavailability causing insulin resistance, which
is the most significant mechanism, resulting in hyperin-
sulinemia [108, 111].
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Conclusions
As gout prevalence has increased over the past decades,
there has been a growing interest in UA, the causative
agent of gout. Although there are some controversies
due to the ambivalent nature of UA in the human body,
several clinical and experimental studies have shown
that UA is associated with CVDs and MetS. Moreover, a
number of studies have revealed that UA is an independ-
ent risk factor for these diseases, suggesting that UA
may be a potential therapeutic target for cardiometabolic
disease patients, especially those with hyperuricemia, as
UA plays a central role. But, there has been some con-
troversy about the causal relationship between hyperuri-
cemia and cardiometabolic disease; uncertainties exist
regarding the mechanism of UA-induced cardiometa-
bolic disease. Therefore, it is necessary to elucidate the
causal relationship between UA and cardiometabolic dis-
ease by further well-controlled, large-scale studies as
well as reveal the potential therapeutic and preventive
effects of UA lowering therapy in cardiometabolic
disease.
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