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Wall shear stress in hypertensive patients is
associated with carotid vascular deformation
assessed by speckle tracking strain imaging
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Abstract

Introduction: Wall shear stress (WSS) is critically important in both vascular remodeling and atherosclerosis. Carotid
intima-media thickness (IMT) and deformation parameters have been used as relevant indicators of carotid atherosclerosis.
This study aimed to investigate the relationships between hemodynamic parameters in the common carotid artery (CCA)

and the severity of carotid atherosclerosis in untreated hypertensive patients.

Methods: Carotid artery ultrasound was performed in 100 untreated hypertensive patients. Morphologic and
hemodynamic parameters of the CCA, including peak and mean WSS, global circumferential strain, peak posterior
radial strain assessed by two-dimensional speckle tracking method, and IMT, were measured.

Results: In patients with hypertension, there were significant correlations between carotid strain parameters and
peak/mean WSS. Stepwise multiple regression analysis for carotid strain parameters after adjustment for age,
carotid IMT, and brachial pulse wave velocity showed that peak WSS was an independent determinant of peak
posterior radial strain (p=0.009) and global circumferential strain (p = 0.002).

Conclusions: These findings indicate that local shear stress is associated with carotid vascular deformation, which
could be an underlying mechanism for the progression of atherosclerosis.
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Introduction
Hypertension is a known major risk factor for athero-
sclerosis, which is the leading cause of death in developed
countries [1]. Although atherosclerosis is a systemic,
multifactorial disease, the process of atherosclerosis pref-
erentially affects the outer edges of vessel bifurcations [2].
The focal nature of atherosclerotic processes may be due
to local hemodynamic factors [3], such as shear stress.
Wall shear stress (WSS) is a lateral biomechanical
force that is determined by blood flow, vessel geometry,
and fluid viscosity [3] and is directly related to vascular
functioning including the regulation of vascular caliber
and inhibition proliferation, thrombosis, and inflamma-
tion of the vessel wall [4]. Thus, WSS is atheroprotective
and critically important in both vascular remodeling and
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atherosclerosis. The ratio between the maximum velocity
at the center of the artery and vessel radius is a common
approximation of WSS [5]. Lower WSS is known to be as-
sociated with the development of atherosclerotic plaques,
as was observed in carotid arteries in subjects with risk
factors for atherosclerosis [6-8]. Among patients with uni-
lateral carotid atherosclerosis, shear stress is lower in
carotid arteries with plaques than in contralateral
plaque-free arteries [7].

Carotid intima-media thickness (IMT) and deform-
ation parameters have been used as relevant indicators
of carotid atherosclerosis [9-12]. Arterial wall stiffness
estimated by speckle tracking imaging may present a dif-
ferent aspect of atherosclerosis from these conventional
parameters of atherosclerosis. The different mechanism
between functional and structural alternations of vessel
walls secondary to atherosclerosis has been described in
previous studies [11,12]. These observations may indicate
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the importance of an integrated approach to assess the
severity of atherosclerosis. This study aimed to investigate
the relationships between hemodynamic parameters in the
common carotid artery (CCA) and the severity of carotid
atherosclerosis in untreated hypertensive patients. Because
various anti-hypertensive drugs have vasodilating proper-
ties, which may impact the hemodynamic parameters of
the CCA, we included patients with newly diagnosed or
untreated hypertension.

Methods

Study population

One hundred patients with untreated or newly diagnosed
essential hypertension were enrolled in this cross-sectional
study. Exclusion criteria for both groups were diabetes
mellitus, pregnancy, renal failure, anemia, chronic hepato-
pathy, nephrotic syndrome, hypothyroidism, and history
of cardiovascular disease (hypertension, coronary artery
disease, history of coronary angiography, or congestive
heart failure). All subjects using lipid-lowering drugs such
as statins or fibrates (in the previous 3 months) were also
excluded. Normal sinus rhythm with a rate of 60 to 100
beats/min on a resting electrocardiogram was also required.
Patients were asked if they were current smokers or non-
smokers. Blood pressure was measured on the right arm,
after 5 min of rest, while in a sitting position. Diagnostic
criteria of hypertension were assessed according to the
Seventh Report of the Joint National Committee on
Prevention, Detection, Evaluation, and Treatment of
High Blood Pressure [13]. This study was approved by
the Kosin University institutional review board, and in-
formed consent was obtained from all participants.

Common carotid artery ultrasound

We scanned bilateral CCA, carotid bifurcations, and the
origins of the internal carotid arteries in longitudinal and
transverse planes using Vivid 7 (GE Medical Systems,
Milwaukee, WI, USA) equipped with a 14-MHz linear
array scanner capable of providing conventional two-
dimensional ultrasound images and strain images. The
reader was the same throughout the study and was blinded
to the subject investigated. All subjects were examined in a
supine position, with the neck extended and the chin fa-
cing the opposite side. After placing the regions of interest
in the far wall of the CCA, mean IMT was estimated in a
region free of atherosclerotic plaques with the use of an
automatic tracking system [14]. IMT was considered nor-
mal if it was less than 0.9 mm, and a plaque was defined as
a focal structure encroaching into the arterial lumen by at
least 0.5 mm or 50% of the surrounding IMT value or if it
had a thickness >1.5 mm as measured from the media-
adventitia interface to the intima-lumen interface [15,16].
Ultrasound measurements were performed in the CCA 1
to 2 cm proximal to the bifurcation. The distal segments of
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the CCA were recorded digitally for further analysis. Blood
flow velocity was detected with the sample volume placed
in the center of the CCA. Peak systolic (Vpeak), end-
diastolic, and mean (Vmean) velocities were recorded for
at least three cardiac cycles. The systolic internal diameter
of the CCA (SD) and the diastolic CCA diameter (DD)
were acquired at the peak T and R waves for calculating
carotid hemodynamic parameters. WSS was calculated
using the Poiseuillian parabolic model of velocity distri-
bution across the arterial lumen based on the assumption
of laminar blood flow, according to the following for-
mulae [17,18]:

Peak WSS = 8 x u x Vpeak/SD
Mean WSS = 8 x 4 x Vmean/DD

where p is blood viscosity, assumed to be 0.035 dyn x s/
cm? in patients with normal hematocrit [18]. The inter-
observer coefficients of variation for peak and mean WSS
were between 6% and 8%, respectively, which are similar
to a previous study [19].

Speckle tracking strain imaging in the carotid artery

An optimal short-axis image of the CCA during a breath
hold at end-expiration was obtained and digitally stored
for off-line analysis. Three heartbeats were collected from
each view, and a single selected cycle was analyzed off-line
with an EchoPAC Dimension system (General Electric,
Horten, Norway). During systole, circumferential strain
assumes positive values due to stretching or expansion
of the vessel wall whereas radial strain becomes nega-
tive as a result of the compression of the vessel wall. As
we previously reported [20], regions of interest (ROIs)
with computation areas of 1 x 1 mm were placed in the
intima-media complex from the short-axis view of the
CCA, and circumferential peak systolic strain (%) was
measured as an average of the whole, circular ROI giv-
ing respective ‘global’ strain. ‘Global’ values for radial
strain could not be calculated due to limitations of the
EchoPAC software, and consequently, radial peak systolic
strain was only obtained ‘regionally’ from a discrete point
(20 x 20 pixels) located in the far wall of the vessel. Inter-
observer and intra-observer variabilities for strain were
16% and 18%, respectively.

Measurement of arterial stiffness

Arterial stiffness was assessed by measuring brachial ankle
pulse wave velocities (baPWVs) using an automatic wave-
form analyzer (VP-1000; Colin Co., Komaki, Japan). For
measuring baPWV, pulse waves obtained from the bra-
chial and tibial arteries were recorded simultaneously,
and the transmission time, which was defined as the
time interval between the initial increase in brachial and tib-
ial waveforms, was determined. The transmission distance
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from the arm to each ankle was calculated according to
body height. The baPWV was automatically computed as
the transmission distance divided by the transmission time.

Laboratory evaluation

A venous blood sample was collected on the day of
examination after an overnight fast of at least 8 h. All
hypertensive patients and controls were fasting for at
least 12 h before blood tests at the beginning of the study.
The following parameters were obtained by standard
techniques on the day of examination: total cholesterol,
low-density lipoprotein cholesterol, high-density lipo-
protein cholesterol, triglycerides, and high-sensitivity
C-reactive protein.

Statistical analysis

Statistical analysis was performed with the statistical pro-
gram SPSS ver. 12.0 (SPSS Inc., Chicago, IL, USA). Results
are presented as the mean + standard deviation or percent-
age. Comparisons were performed between patients with
hypertension and controls using the Student t-test for
quantitative variables and the chi-square or Fisher’s exact
test for qualitative variables. Correlations between vari-
ables were made by calculating the correlation coefficient
through Pearson correlation tests. Statistical significance
was noted at a p value less than 0.05.

Results

Baseline clinical characteristics and parameters of the ca-
rotid artery in hypertensive patients are listed in Tables 1
and 2. In subjects with hypertension, lower carotid WSS
was accompanied by increased age (r = —0.205, p = 0.034),

Table 1 Baseline clinical characteristics of hypertensive
patients

Characteristic Hypertensives (n = 100)

Age (years) 60.1+9.8
Body mass index (kg/m?) 246+ 30
Systolic BP (mmHg) 1483+ 149
Diastolic BP (mmHg) 92.1+133
Hematocrit (%) 443+87
Total cholesterol (mg/dL) 1749+ 46.8
Low-density lipoprotein cholesterol (mg/dL) 1104 +£409
High-density lipoprotein cholesterol (mg/dL) 505+126
Triglycerides (mg/dL) 1479+ 86.6
Free T4 (pmol/L) 1.17+0.16
Thyroid-stimulating hormone (mIU/L) 1.70£ 143
High-sensitivity C-reactive protein (mg/L) 412+598
Brachial ankle pulse wave velocity (m/s) 1511443233

Values are presented as mean + standard deviation.
BP blood pressure.
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Table 2 Comparison of parameters of carotid arterial
stiffness, hemodynamics, and atherosclerosis between
normotensive controls and hypertensive patients

Variable Hypertensives
(n=100)
Left ventricular outflow tract deceleration time (ms) 1759+193
CCA mean intima-media thickness (mm) 0.90+0.27
CCA systolic diameter (mm) 72+08
CCA diastolic diameter (mm) 64+0.7
Peak systolic velocity (cm/s) 606+ 13.7
End diastolic velocity (cm/s) 138+33
Mean velocity (cm/s) 372+78
Peak WSS (dyn/cm?) 2634075
Mean WSS (dyn/cm?) 1384067
Pulsatility index 031+0.03
Resistive index 0.76 £0.05
Global circumferential strain (%) 374+178
Peak posterior radial strain (%) —-328+152

Values are presented as mean + standard deviation.
CCA common carotid artery, WSS wall shear stress.

higher carotid mean IMT (r=-0.236, p =0.012), higher
baPWV (r=-0.236, p = 0.012), and reduced peak posterior
radial strain and global circumferential strain (r = -0.449,
p<0.001 and r=0.492, p =0.012, respectively) (Table 3).
Systolic blood pressure showed no significant effect on
global circumferential or peak posterior radial strain. On
univariate regression analysis, peak WSS significantly af-
fected the baPWV, global circumferential strain, and peak
posterior radial strain (Figure 1). Multiple regression ana-
lysis was performed to evaluate contributing factors of de-
creased carotid deformation parameters in hypertensive
subjects (Table 4). After adjustment for age, carotid IMT,

Table 3 Correlation coefficients between carotid
parameters in the hypertensive group (n=100)

Variable Peak wall shear  Carotid mean

stress IMT
r p value r p value
Age -0205 0034 0433 <0.001
Systolic blood pressure -0032 0744 -0005 0954
Total cholesterol 0.050 0632 —-0080 0445
High-sensitivity C-reactive protein  —0.086  0.495 0037  0.769
Pulsatility index 0.186 0.048 0.204 0.029
Resistive index 0.189 0.045 0.208 0.026
Brachial ankle pulse wave velocity —0292  0.003 0265  0.007
Global circumferential strain 0492 <0001 -0.29 0.008
Peak posterior radial strain -0449 <0001 0236 0033
Carotid mean IMT -0236 0012 1

IMT intima-media thickness.
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Figure 1 Regression analysis between peak wall shear stress
(WSS) and carotid deformation parameters assessed by speckle
tracking echocardiography. (A) Global circumferential strain and
(B) peak posterior radial stain showed a significant positive
correlation with peak WSS. (C) Brachial ankle pulse wave velocity
(baPWV) showed a significant negative correlation with peak WSS.

1000 1500
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2000 2500

and baPWYV, peak WSS was an independent determinant
of global circumferential strain (p =0.009) and peak pos-
terior radial strain (p = 0.002).
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Table 4 Multiple regression analysis of factors affecting
carotid deformation parameters in hypertensive subjects

95% confidence
interval of B

Variable B p
value

Global circumferential strain
(adjusted R’ = 0.204)

Age —0.005 0.968 —0.047 to 0.045
baPWV -0.178 0.139 —0.002 to 0.000
Carotid mean IMT 0032 0.7% -1671 10 2.175
Peak WSS 0424 0.001 0414 to 1412
Posterior radial strain
(adjusted R? = 0.204)
Age -0.014 0912 —0.046 to 0.041
baPWV 0274 0023 0.000 to 0.003
Carotid mean IMT 0.003 0977 —1.793 to 1.845
Peak WSS -0.366 0.002 —1.224 to —0.280

IMT intima-media thickness, baPWV brachial ankle pulse wave velocity,
WSS wall shear stress.

Discussion

Our data demonstrate that local shear stress is associated
with carotid vascular deformation in hypertensive patients,
which could be an underlying mechanism for the progres-
sion of atherosclerosis.

The parallel frictional drag force of shear stress is one
of the important blood flow-induced mechanical stresses
acting on the vessel wall. WSS is proportional to the
product of blood viscosity and spatial gradient of blood
velocity at the wall. It is well established that WSS is an
important determinant of endothelial cell function, and
there is increasing evidence that low WSS expresses an
atherogenic endothelial gene profile [3,4,21]. Moreover,
WSS regulates arterial diameter by modifying the release
of vasoactive mediators by endothelial cells [4,22]. There-
fore, mechanical shear stress plays an important role in
hypertension both directly and indirectly via the release of
bioactive molecules [23]. Because of the lack of techniques
to assess WSS in vivo, WSS has been calculated according
to Poiseuille’s law using the recorded velocity profiles and
whole blood viscosity in large arteries [5]. In our study, the
decrease in WSS of the CCA was due to the reduced
blood flow velocity and luminal enlargement. A previous
study showed that carotid arterial inter-adventitial dis-
tance (diameter) is an indicator of the damaging effects of
age and atherosclerosis [24] and is most likely an adaptive
phenomenon [25]. Our results are in agreement with pre-
vious observations that showed that hypertension is asso-
ciated with carotid artery remodeling [26,27]. Because high
blood pressure exerts a fatiguing effect on the elements of
the arterial wall such as elastin and collagen, degenerative
changes and inter-adventitial enlargement, as well as alter-
ation of blood flow velocity, may result [28,29]. As ex-
pected, carotid mean IMT was higher in our hypertensive
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group than in normotensive controls, which reflects either
intimal thickening, thickening of the medial layer, or a
combination of both.

The unique finding in our study is that a strong in-
verse correlation between WSS and carotid deformation
parameters indicated speckle tracking strain as well as
baPWYV, which indicates a low WSS effect on arterial
stiffness. This supports our hypothesis that altered vas-
cular stiffness is associated with hemodynamic vascular
function, which might promote atherosclerosis. During
left ventricular ejection, the systolic cardiac forces result
in the exertion of hemodynamic forces on the carotid ar-
tery wall. The endothelial cells on the luminal side of the
carotid artery sense the pressure pulse and a tangential
stress exerted by the flowing blood. The difference be-
tween diastolic and systolic BP induces the systolic in-
crease in diameter (radial strain) and cross-sectional area
relative to the end-diastolic level (circumferential wall
strain). The tangential stress exerted by the flowing blood
is known as WSS, and the radial and circumferential
thickening of the carotid arterial wall can be assessed by
speckle tracking imaging-based strain parameters, as we
previously reported [20]. Decreased elasticity of the arter-
ial wall may be present even before the occurrence of
any clinical symptoms or atherosclerotic plaques [30,31];
therefore, evaluation of elastic properties of the arterial
wall may provide efficient identification of individuals in
the early stages of atherosclerotic disease. In our patients
with hypertension, the decrease in WSS is explained by
the increase in arterial diameter in order to reduce the loss
of arterial compliance, which is connected with the re-
duced deformation of the carotid vascular wall. In a situ-
ation with low WSS, the resultant stagnation of blood
permits increased uptake of atherogenic blood particles as
a result of increased residence time [6]. WSS can also
change the morphology and orientation of the endothelial
cell layer [21]. Exposure of the arterial wall to a relatively
low WSS may increase the vulnerability of such regions of
the vessel to atherosclerosis [21]. Moreover, low WSS
modulates the transcription of genes for nitric oxide and
increased local production of mitogenic substances [32].
Consequently, the biomechanical force (low WSS) affects
the vascular elastic properties (carotid wall deformation),
promoting atherosclerosis.

This study has some limitations that should be consid-
ered. The first is related to the small number of patients
and selection of the study population. Further study with
a larger population should be undertaken to overcome
this limitation. Second, the measurement of the WSS was
based only on Poiseuille’s law, which is a common ap-
proximation of WSS [7,33,34]. However, when assuming a
parabolic velocity profile, the underestimation of WSS
might potentially lead to inaccuracy. However, even actual
measurements of viscosity must not lead to real values of
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shear stress [35], and the use of an arbitrary value of blood
viscosity would not change the statistical significance of
the results [6,36]. Finally, patients enrolled in our study
would be at relatively earlier stages of hypertension be-
cause the inclusion criteria eliminated patients treated for
hypertension, so the majority of the study cohort (82%)
had stage I hypertension. Therefore, the prevalence of
carotid plaques was not common (12%), and we did not
perform subgroup analysis according to the presence of
carotid plaques, which is the acute surrogate marker of
carotid atherosclerosis. Nonetheless, this study highlighted
that a reduced WSS independently affects reduced carotid
deformation parameters even before the occurrence of any
clinical symptoms or atherosclerotic plaques. Routine ca-
rotid ultrasonography is recommended in hypertensive pa-
tients with these independent predictors.

Conclusions

It can be concluded from this study that local shear stress
in hypertensive patients is associated with carotid vascular
deformation, which could be an underlying mechanism
for the progression of atherosclerosis.
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