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Abstract
Hypertension is an important modifiable risk factor for morbidity and mortality associated with cardiovascular 
disease. The incidence of hypertension is increasing not only in Korea but also in many Western countries due to 
the aging of the population and the increase in unhealthy lifestyles. However, hypertension control rates remain 
low due to poor adherence to antihypertensive medications, low awareness of hypertension, and numerous 
factors that contribute to hypertension, including diet, environment, lifestyle, obesity, and genetics. Because 
artificial intelligence (AI) involves data-driven algorithms, AI is an asset to understanding chronic diseases that are 
influenced by multiple factors, such as hypertension. Although several hypertension studies using AI have been 
published recently, most are exploratory descriptive studies that are often difficult for clinicians to understand and 
have little clinical relevance. This review aims to provide a clinician-centered perspective on AI by showing recent 
studies on the relevance of AI for patients with hypertension. The review is organized into sections on blood 
pressure measurement and hypertension diagnosis, prognosis, and management.
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Introduction
Hypertension is a highly prevalent chronic disease 
affecting approximately 1.28  billion people worldwide 
[1]. Despite increases in awareness and treatment rates, 
hypertension and its complications are still a significant 
clinical burden [1, 2]. This may be because hyperten-
sion is a heterogeneous phenotype caused by many fac-
tors, including age, sex, body mass index, lipid profiles, 
personal habits (stress, smoking, physical activity, etc.), 
socioeconomic status, environment, and genetics [2–4].

Artificial intelligence (AI) may represent a break-
through in understanding and treating hypertension and 
an important tool for overcoming the current problems 
associated with managing patients with hypertension. 
AI is increasingly impacting our daily lives, not only in 
the areas of advertising, finance, law, and education but 
also in medicine, where AI technologies are now being 
applied to the field of hypertension. However, AI research 
is limited to exploratory techniques with minimal clinical 
implications and can be difficult to understand for clini-
cians who are not experts in machine learning (ML) or 
deep learning (DL).

Before generating this review article, we conducted a 
detailed search of journal databases, including PubMed, 
EMBASE, and Web of Science, for applications of AI in 
hypertension from 2015 to 2023. Search terms included 
AI, artificial neural network, DL, ML, hypertension, 
blood pressure (BP), and BP measurement. We included 
clinical trials involving hypertensive patients rather than 
healthy individuals. To narrow our focus, we excluded 
exploratory technical studies, validation studies, and 
community-based primary health care studies. In this 
article, we review recently published studies of AI appli-
cations to BP measurement, hypertension diagnosis 
and prognostication, and management of hypertensive 
patients to clarify the current clinical implications of AI 
in hypertension from a clinician-centered perspective.

Clinical implications of AI
BP measurement
Accurate BP measurement is a cornerstone of hyperten-
sion diagnosis and management. The originally recom-
mended method for measuring BP is the oscilloscopic 
method [2]. Noninvasive BP estimation devices include 
the traditional sphygmomanometer using an inflatable 
cuff, stethoscope, and manometer using Korotkoff sound, 
which was introduced in 1905 [5, 6]. Nevertheless, it is 
difficult and time consuming to measure BP. Moreover, 
oscilloscopic measurement has significant interoperator 
differences. Compared to the conventional oscilloscopic 
method, automatic monitors have become popular in 
recent years because they can easily measure BP and 
can be used to measure BP at home. Home BP monitor-
ing can be the key to better BP control [7]. To improve 

the accuracy of BP measurement, many new algorithms 
or devices have been developed using AI technology to 
improve the precision, accuracy, and reproducibility of 
BP measurement. Automatic noninvasive BP estimation 
devices can be divided into oscillometric, auscultatory, 
and cuffless methods.

AI algorithms have been used for many years to 
improve the accuracy of BP measurement with automatic 
oscillometric BP monitors, and several experimental 
studies on the performance of these algorithms have been 
published recently [8]. In several clinical studies, auscul-
tatory waveform studies have been published mainly for 
inflated cuff-based BP measurement [9]. Furthermore, 
Chu et al. [10] developed a smartphone app with an aus-
cultatory waveform analysis algorithm to simultaneously 
evaluate the accuracy of an automated oscillometric BP 
device.

Recently, noninvasive automated cuff-less BP moni-
tors have been developed and are commercially available 
[11]. Various methods have been proposed for cuff-less 
BP estimation, including methods based on the pulse 
transit time (PTT) and the pulse arrival time (PAT) using 
photoplethysmograms (PPGs) and electrocardiograms 
(ECGs) [12, 13]. A PPG is a noninvasive optical recording 
used to detect changes in blood volume in tissue, particu-
larly in the microvascular bed. The PPG sensor detects 
changes in the amount of transmitted or reflected light 
and generates a PPG waveform. The volume and dilation 
of the arteries can be related to the pressure in the arter-
ies, so the PPG signal produces a pulse waveform similar 
to the pressure waveform produced by a tonometer. The 
collected signal and data can be fed into an ML model 
to obtain estimates of SBP and DBP from the raw signal 
[13].

The PAT is more commonly used to describe the time 
from the R-wave of the ECG to the arrival of the arterial 
pulse at the peripheral site. The PTT, on the other hand, 
is a more general concept that includes the time it takes 
for the pulse to travel between two selected points. It is 
well known that there is a positive correlation between 
the PTT or PAT and BP because arterial stiffening result-
ing from increased BP leads to a rise in the pulse wave 
velocity and a decrease in the PTT [12–14]. These meth-
ods are used in cuff-less noninvasive automated BP mon-
itors, which are suitable for taking measurements at any 
time and can be used for continuous monitoring.

Recently, several clinical studies of multiple DL algo-
rithms for BP estimation using PPGs [15], calibration-
free measurement [16], smartphone apps [17, 18], and 
wrist-worn cuff-less devices [19, 20] have been published. 
In one study, retinal fundus photographs were used to 
measure BP, rather than the presence of complications 
of hypertension, but the accuracy was not as good as a 
direct BP measurement [21]. Nevertheless, the fact that 
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BP can be measured with imaging data is an example of 
how various methods of BP measurement may be tested 
in the future (Table 1).

Diagnosing hypertension
Many studies have been published using AI to diagnose 
[22, 23] or predict the occurrence of hypertension [24–
26] in the general population. As this article focuses on 
studies in hypertensive patients, recent studies that have 
attempted to use AI to identify subtypes of hypertension 
in hypertensive patients were reviewed (Table 2).

BP variability (BPV) is known to be an independent risk 
factor for cardiovascular disease (CVD), but the diagnos-
tic criteria are vague. Tsoi et al. [27] reanalyzed previous 
randomized controlled trials, including the SPRINT trial, 
and established patient clusters based on low, medium, 
and high BPV levels using traditional quantile cluster-
ing and 5 ML algorithms. K-means clustering showed the 
most stable and reliable results. It showed that approxi-
mately one-seventh of the population with a high level 
of BPV correlated with a higher risk of stroke and heart 
failure [27]. BPV data are time series and address differ-
ent time scales; thus, Koshimizu et al. [28] predicted BPV 
using a multi-input multi-output deep neural network. 
The dataset in this study included cardiovascular risk fac-
tors and home BP readings every day for 2 years or more.

Recent studies have shown that DL or ML algorithms 
can be used to diagnose clinically important conditions 
such as masked uncontrolled hypertension or second-
ary hypertension using not only big data from electronic 
health records (EHRs) but also easily identified clinical 
features such as office BP, pulse pressure, use of beta-
blocker, and high-density lipoprotein-cholesterol (HDL-
C) level [29, 30]. Furthermore, there have been several 
attempts to diagnose hypertension using the amplitude 
and voltage of ECG waves [23, 31] (Fig. 1).

Prediction of prognosis in hypertensive patients
As BP is a complex multifactorial phenotype that is influ-
enced by many factors, including genomic, demographic, 
lifestyle and environmental factors, the prognosis of 
hypertensive patients is also influenced by many factors. 
In analyzing multimodal data, AI provides the oppor-
tunity to conduct integrated analyses of hypertension 
as a newer analytic method and provides more insight 
into the prognosis and risk stratification of hypertensive 
patients [32, 33]. Louca et al. [34] analyzed the multi-
modal data from TwinsUK with concurrent BP, metabo-
lomics, genomics, biochemical measures, and dietary 
data. The features tested in this study were then probed 
using the same algorithm in an independent dataset of 
2,807 individuals from the Qatar Biobank. They found 
that the most predictive features of BP are the tradi-
tional risk factors, metabolites, and diet, while genetics 

Table 1 Summary of recently published artificial intelligence 
(AI)-based clinical studies on BP measurement methods 
conducted in hypertensive patients

Authors Years Results No. of 
subjects

Inflatable cuff based auscultatory measurement
AI algorithm 
could automati-
cally estimate BP 
using ausculta-
tory waveform

Argha et 
al. [9]

2020 SBP, 
MAE = 1.7 ± 3.7 
mmHg/ DBP, 
MAE = 3.4 ± 5.0 
mmHg

350

BP monitors by 
the ausculta-
tory method: A 
smartphone-
based APP

Chu et al. 
[10]

2017 SBP, 
MAE = 2.45 ± 1.47 
mmHg/ DBP, 
MAE = 0.69 ± 1.36 
mmHg

85

Cuff less non-invasive measurement
A multistage 
deep neural net-
work to estimate 
SBP and DBP 
using the PPG.

Esmael-
poor et al. 
[15]

2020 SBP, Mean 
SD = + 1.91 ± 5.55 
mmHg/ 
DBP, Mean 
SD = + 0.67 ± 2.84 
mmHg

200

Calibration free 
BP estimation 
with PPG

Samimi et 
al. [16]

2023 SBP, r = 0.73/ DBP, 
r = 0.77

250

Smartphones 
APP using only 
HR and modified 
normalized pulse 
volume (mNPV) 
could assess BP

Matsumura 
et al. [17]

2018 SBP, r = 0.685/ 
DBP, r = 0.685

49

A smartphone-
case based 
single-channel 
ECG monitor 
simultaneously 
with a PPG pulse 
wave recording

Sagirova et 
al. [18]

2021 The Bland–Alt-
man analysis; SBP, 
SD = 3.63, and 
bias was 0.32/ 
DBP, SD = 2.95 
and bias was 
0.61/ SBP, r = 0.89 
DBP, r = 0.87

512

Continuous 
monitoring of 
BP using a wrist-
worn cuff less 
device

Sayer et al. 
[19]

2022 SBP, r = 0.91, 
MAE = 8.2 ± 5.8/ 
DBP, r = 0.85, 
MAE = 6.4 ± 3.9

34

BP estimation with image modality
BP measurement 
using Retinal fun-
dus photographs

Poplin et 
al. [21]

2018 SBP, MAE = 11.35/ 
DBP, MAE = 6.42

Cohort 
1 = 48,101/ 
Cohort 2* 
=12,026

APP, a smartphone application; BP, blood pressure; DBP, diastolic blood 
pressure; ECG, electrocardiogram; HR, heart rate; HTN, hypertension; MAE, 
mean absolute error; PAT, pulse arrival time; PPG, photoplethysmogram; SBP, 
systolic blood pressure; SD, standard deviation

Cohort 2* was for external validation



Page 4 of 9Cho and Park Clinical Hypertension           (2024) 30:11 

(single nucleotide polymorphisms) did not appear to play 
a major role in predicting prognosis.

Several studies have shown that ML algorithms are bet-
ter in the prediction of the 10-year risk of cardiovascular 
events than an established risk prediction approach such 
as the Framingham score or ACC/AHA CVD Risk Calcu-
lator (Table 3) [35–39].

The features most strongly associated with CVD vary 
across studies, depending on the algorithm or input 
dataset. Lee et al. [39] reported characteristics such as 
age, sex, income, body mass index, BP, smoking, physi-
cal activity, lipid profile, and fasting plasma glucose level 
associated with CVD. Lacson et al. [40] reported that 
age, the urine albumin/creatinine ratio, the estimated 
glomerular filtration rate, serum creatinine, history of 
subclinical CVD, total cholesterol, a variable represent-
ing time-series SBP signals using wavelet transforma-
tion on HDL‐C, the 90th percentile SBP, and triglyceride 
were significantly associated with CVD. Wu et al. [30] 
extended predictions from CVD to end‐stage renal dis-
ease and all‐cause mortality in 508 young patients by 
using several clinical variables, namely, the left atrial 
diameter, HDL‐C level, cholesterol level, big endothelin‐1 
level, right arm DBP, right leg SBP, left leg SBP, right leg 

DBP, left arm SBP, mean nocturnal arterial oxygen satu-
ration, past maximum SBP, and blood urea level.

The prognostication of hypertensive patients is a highly 
dynamic domain in AI research, leading to the emergence 
of diverse AI algorithms. Hybrid or multiple algorithms 
have been applied to improve the accuracy of prognostic 
models and analyze multimodal datasets, such as those 
based on EHRs containing textural descriptions and dis-
crete physical indicators [37, 38]. In addition, to over-
come biases arising from differences in race/ethnicity or 
primary/tertiary healthcare systems, existing large inter-
national prospective cohorts or randomized controlled 
trials have been reanalyzed and used for external valida-
tion [35, 36].

Management of hypertension
AI could play a role in novel digital interventions, such 
as promoting patient awareness, self-monitoring, healthy 
behaviors, and medication adherence. In other words, AI 
can be integrated into health coaching apps that automat-
ically analyze patients’ BP or activity data from wearable 
BP devices and/or social media and then provide person-
alized feedback, including suggestions for BP medica-
tions and lifestyle modifications. Recently, randomized 

Table 2 Summary for all the diagnosing hypertension based on artificial intelligence (AI) presented in this paper
Title Authors Year Selected Feature No of 

subjects
Best per-
formance 
Algorithms

Model to predict BP over 4 weeks for an 
individual with high variability of BP

Koshimizu 
et al. [28]

2020 BP at home every day for 2 years or more; 
Medical examination data such as gender, age, 
and others

423 Multi-input 
multi-output 
deep neural net-
works including 
LSTM or GRU

High BP variability groups based on K means 
clustering showed higher HR than quartile 
grouping.

Tsoi et al. 
[27]

2020 Visit to visit BP variability; two-third from the 
SBP variation and one-third from the DBP 
variation

SPRINT 
study=8133/ 
HK 
cohort=1094

K-means 
clustering

Prediction of masked hypertension and 
masked uncontrolled hypertension using ML

Hung et 
al. [29]

2021 Office SBP, DBP, MAP, and PP, betablocker, HDL-c Cohort 
1=970, 
Cohort 2* 
=416

Random forest

Prediction of uncontrolled hypertension 
within the coming three-month period

Moham-
madi et al. 
[59]

2019 EHR data 17,4169 Logistic 
regression

ML based on clinical parameters and features 
derived from the ECG, to detect hypertension

Angelaki et 
al. [31]

2022 Features derived from the ECG, age, BMI, BMI-
adjusted Cornell criteria.
R wave amplitude in aVL and BMI-modified 
Sokolow-Lyon voltage

1091 Random forest

Differential diagnosis of secondary hyperten-
sion based on DL

Wu et al. 
[60]

2023 EHR of each patient includes chief complain 
and present illness, medical examination 
results

11,961 Feature encoder 
with additional 
attention layer

Prediction of Post-treatment ABPM Hae et al. 
[61]

2023 Clinical and lab findings, initial ABPM data, anti-
hypertensive medication

1,129 Cat-Boost

ABPM, ambulatory blood pressure monitoring; BMI, body mass index; BP, blood pressure; DBP, diastolic BP; DL, deep learning; ECG, electrocardiogram; EHR, electric 
health record; GRU, gated recurrent unit; HDL-c, HDL-cholesterol; HER, electric health record; HR, Hazard ratio; LSTM, long short-term memory; MAP, Mean arterial 
pressure; ML, machine learning; PP, pulse pressure; SBP, systolic BP; SPRINT, the Systolic Blood Pressure Intervention Trial

Cohort 2* was for external validation
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clinical trials (RCTs) of mobile apps for managing BP 
have been reported. One RCT found a small improve-
ment in self-reported adherence with no change in SBP 
compared to the control group when using a smartphone 
app to improve medication adherence [41]. However, 
another RCT utilizing a mobile self-monitoring BP app in 
conjunction with a feedback algorithm showed a signifi-
cant improvement in BP control [42].

AI could be useful for personalized hypertension man-
agement in terms of antihypertensive drug selection or 
BP control strategies, such as intensive BP control. Sev-
eral RCTs have demonstrated the beneficial effects of 
intensive BP control, and recent ACC/AHA hypertension 
guidelines recommend intensive BP control [3, 43, 44]. 
However, intensive BP control may sometimes be difficult 
to apply to all patients. Therefore, it is important to define 
which patients can benefit from intensive BP control. AI 
can be used to define personalized benefit through phe-
notypic representation in clinical trials. Oikonomoun et 
al. developed a practical tool for individualized selection 
of intensive versus standard SBP control in patients with-
out and with type 2 diabetes mellitus [45]. In addition, a 
study was recently conducted for personalized optimal 
antihypertensive drug selection. Data mining methods 
utilizing data from successful and unsuccessful cases 

were applied to reveal the spectrum of clinical character-
istics or important clinical attributes (sensitizers) of five 
commonly used drugs (irbesartan, metoprolol, felodip-
ine, amlodipine, and levo-amlodipine) [46].

By analyzing big data using ML, Koren et al. [47] 
showed that drug options that are not reflected in the 
latest guidelines, such as beta-blockers, proton pump 
inhibitors and statins, improve the success rate of hyper-
tension treatment. This shows that AI can be used to 
consider new indications for already marketed drugs.

It is commonly assumed that the absolute risk reduc-
tion (ARR) of a treatment-induced cardiovascular event 
is proportional to baseline risk, with the greatest benefit 
in high-risk patients. Using individual participant data 
from the SPRINT and ACCORD-BP trials, Duan et al. 
showed that an X-learner correctly observed that individ-
ualized treatment effects were often not proportional to 
baseline risk. This study demonstrated that ML methods 
can be used to improve the identification and calibration 
of individualized treatment effect estimates from clini-
cal trial data [48]. Li et al. [49] evaluated nonadherent 
patients’ characteristics from the New York City Commu-
nity Health Survey using the ML segmentation approach 
as exhaustive chi-square automatic interaction detection. 
The study revealed that the most significant predictors of 

Fig. 1 Big data commonly used in each category of hypertension research, and the algorithms that use it to implement individualized approaches for 
hypertensive patients. BP, blood pressure; CVD, cardiovascular disease; DNN, deep neural network; ECG, electrocardiography; EHRs, electronic health 
records; LSTM, long short-term memory; PPG, photoplethysmogram; RCT, randomized controlled trial; SVM, support vector machine; XGboost, extreme 
gradient boost
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nonadherence for young adults aged 18 to 44 years were 
no diabetes and white, Asian or Hispanic race. Moreover, 
uninsured status, no diabetes mellitus, and moderate or 
high neighborhood poverty were predictors of nonadher-
ence among adults aged 45 to 65 years. Older adults aged 
65 years and older were more likely to be nonadherent if 
they had a low household income or lived in neighbor-
hoods with moderate to high levels of poverty.

Population segmentation analysis can help interpret 
complex interactions or correlations between variables 
and offer targeted and effective population health inter-
ventions for each segment. This approach is more effec-
tive than regression analysis.

Limitations of applying AI in hypertension
There are several challenges to the implementation of AI 
for managing patients with hypertension. Several regula-
tory healthcare systems, such as the United States Food 
and Drug Administration (FDA) and Korean Ministry of 
Food and Drug Safety, have announced approval guide-
lines [50–53]. However, there is still a lack of expert 

consensus or guidelines. In addition, there are legal and 
ethical concerns about processing large volumes of data. 
AI research requires large-scale data for training, testing, 
and validating.

AI algorithms are trained on previous datasets, which 
can reflect selection bias based on factors such as sex, 
race, and socioeconomic status. These biases can be 
encoded into the algorithm, leading to discriminatory 
outcomes. Therefore, researchers should develop tech-
niques to debias datasets and algorithms, such as using 
diverse training data and implementing fairness-aware 
algorithms. One issue associated with AI research is the 
lack of transparency and explainability. AI models are 
often opaque and difficult to understand, creating a ‘black 
box’ problem. This makes it challenging to explain how 
the algorithm arrives at its decisions, raising concerns 
about accountability and trust [32, 54, 55]. Researchers 
should investigate methods to increase the interpretabil-
ity of AI models. Techniques such as importance maps 
or attention mechanisms can be used to emphasize the 
data components that have the most significant impact 

Table 3 Summary for all the cardiovascular disease (CVD) risk prediction model in patients with hypertension using AI presented in 
this paper
Database Authors Year Results Outcome Algorithms
Twins genomics, BP, metabolomics, biochemical 
measures, and dietary data

Louca et 
al. [34]

2022 SBP, 
MAE = 11.31 ± 0.64 
mmHg 
R2 = 0.39 ± 0.04

Understanding of their in-between 
relationships and expands the 
range of potential biomarkers for BP

XGBoost

National Health Information Databasea Lee et al. 
[39]

2022 Accuracy = 0.92, 
F1 Score = 0.92, 
AUC-ROC = 0.99

Prediction CVD death within a year 
in patients with hypertension

DNN

508 young patients with hypertension at a tertiary 
hospital

Wu et al. 
[30]

2020 AUC-ROC = 0.75 The ML approach was better than 
that of the recalibrated Framingham 
Risk Score model

Recursive 
feature elimina-
tion, extreme 
gradient boost-
ing, and 10-fold 
cross-validation

35,332 EHRs from hypertensives Ren et al. 
[37]

2019 Accuracy = 0.87 Kidney disease prediction in hyper-
tension patients

Hybrid model; 
BiLSTM and 
Autoencoder

A 13-year follow up data set from MESA (the Multi-
Ethnic Study of Atherosclerosis) of 6459 participants 
and the FLEMENGHO study (the Flemish Study 
of Environment, Genes and Health Outcomes) to 
validate the model in an external cohort

Kakadiaris 
et al. [36]

2018 Sensitivity = 0.86, 
Specificity = 0.95, 
and AUC = 0.92

ML calculator which use the same 9 
traditional risk factors Outperforms 
ACC/AHA CVD Risk Calculator in 
MESA

SVM

Using data on 423,604 participants without CVD at 
baseline in UK Biobank

Alaa et al. 
[38]

2019 AUC-ROC = 0.774 AutoPrognosis model improved risk 
prediction compared to Fram-
ingham score a Cox proportional 
hazards model

bAutoPrognosis,

Prospective cohort study using routine clinical data 
of 378,256 patients from UK family practices, free 
from CVD

Weng et al. 
[35]

2017 Sensitivity = 0.675, 
PPV = 0.184, 
Specificity = 0.707, 
NPV = 0.957

ML improves accuracy of CVD risk 
prediction over 10 years

AUC, area under curve; BiLSTM, Bidirectional Long Short-Term Memory; BP, blood pressure; CVD, cardiovascular disease; DNN, deep neural network; EHR, electric 
health record; NPV, negative predictive value; PPV, positive predictive value; ROC, receiver Operating Characteristic; SVM, Support Vector Machines
aage, sex, income, body mass index, BP, variance of smoking, physical activity, lipid profile, and fasting plasma glucose
ban algorithmic tool that automatically selects and tunes ensembles of ML modeling pipelines comprising data imputation, feature processing, classification and 
calibration algorithms
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on the algorithm’s output. Because AI systems often 
require access to large amounts of personal data to func-
tion effectively. This raises concerns about data privacy, 
security and the potential for misuse. Thus, it is essential 
to ensure robust data privacy regulations and advocate 
responsibility in the data collection practice.

Also, an AI algorithm and the accuracy of the algo-
rithm depend on the amount of data. Many AI studies 
have reanalyzed existing cohorts or published clinical 
trials to confirm superiority over statistical analysis and 
gain new insights. There are only a few reliable RCTs 
in hypertension AI research, such as those assessing 
mobile apps for hypertension management and new BP 
measuring devices (Tables 1 and 4). Recently, various AI 
algorithms have been developed by many institutions. 
The lack of standardization and interoperability, such as 
overfitting, is inevitable, although most AI studies vali-
date their algorithms in separate datasets [56, 57]. AI 
can make decisions about the diagnosis, treatment, and 
prognosis of hypertension, thereby mimicking a clini-
cian but is not considered able to replace the physician. 
AI is based on automated learning from data, so if the 
data are biased, the algorithm could generate the wrong 
data-driven decision [58]. Because AI draws conclusions 
in the most efficient way for its purpose without regard 
to medical ethics, clinicians with some insight into medi-
cal ethics or clinical settings must become involved in the 
development and implementation of algorithms [32].

Conclusions
Most AI studies on hypertension have remained explor-
atory technology assessments or have reanalyzed data 
from retrospective cohorts or RCTs focused on other 
topics. To date, only a few RCTs have tested AI algo-
rithms in hypertension, such as algorithms for mobile 
apps or BP measuring devices. Nevertheless, with the 
innovative development of AI technology, AI has the 
potential to overcome the stagnation in hypertension and 
all aspects of hypertension clinical practice, including 
BP measurement, diagnosis, prognostication, and man-
agement. Collaboration with medical professionals, par-
ticularly in the field of hypertension research, is crucial 
during the development and validation process of the AI 
model to ensure clinical relevance.

Abbreviations
AI  artificial intelligence
ARR  absolute risk reduction
BP  blood pressure
CVD  cardiovascular disease
DBP  diastolic blood pressure
DL  deep learning
EHR  electronic health records
HDL-C  high-density lipoprotein-cholesterol
ML  machine learning
PAT  pulse arrival time
PPG  photoplethysmogram
PTT  pulse transit time
RCT  randomized controlled trial
SBP  systolic blood pressure

Table 4 Summary for all the management of hypertension based on artificial intelligence (AI) presented in this paper
Title Authors Year Conclusion Design No. of 

patients
Self-Monitoring of BP and feed-back using APP Choi et al. 

[42]
2022 Improvement of Home BP and drug adherence RCT 180

Medication reminder alert and adherence report 
APP

Morawski 
et al. [41]

2018 Improvement of drug adherence but not signifi-
cantly lowering BP

RCT 411

Computational trial phenomaps and ML Oikono-
mou et al. 
[45]

2022 Algorithm for individually selecting patients to 
benefit from intensive BP control

SPRINT and 
ACCORD-BP 
trial

9,361

Characterizing the critical features when personal-
izing antihypertensive drugs using spectrum 
analysis and machine learning methods

Chunyu et 
al. [46]

2020 A data-driven reference for the personalization of 
clinical antihypertensive drugs

Registry data 14,581

ML techniques such as decision trees and neural 
networks identified determinants that contribute 
to the success of hypertension drug treatment

Koren et 
al. [47]

2018 Beta blocker as a potential promising antihyper-
tensive drug. PPIs and statins have been very 
recently identified as effective in lowering BP

Israel Health 
service organi-
zation data

30,705

The X-learner as a meta-algorithm specifically de-
signed for estimating individual treatment effects

Duan et al. 
[48]

2019 ML methods may improve discrimination and 
calibration of individualized treatment effect 
estimates from clinical trial data

SPRINT and 
ACCORD-BP 
trial

14,094

Decoding Nonadherence to Hypertensive 
Medication in NYC: A Population Segmentation 
Approach

Li et al. 
[49]

2019 Identifying segments of adults who do not 
adhere to hypertensive medications has practical 
implications as this knowledge can be used to 
develop targeted interventions important char-
acteristics that can be used to predict nonadher-
ence behaviors

Hypertensive 
patient from 
2016 New York 
City Com-
munity Health 
Survey

10.2% 
of 
adults 
in NYC

gACCORD-BP Trial, The Action to Control Cardiovascular Risk in Diabetes blood pressure trial; APP, a smartphone application; AUC, area under curve; BP, blood 
pressure; ML, Machine learning; NYC, New York City; PPI, proton pump inhibitor; RCT, randomized clinical trial; ROC, Receiver Operating Characteristic; SPRINT, the 
Systolic Blood Pressure Intervention Trial
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